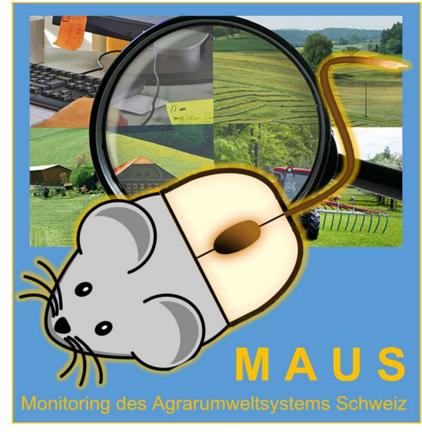


Federal Department of Economic Affairs, Education and Research EAER


Agroscope

Tool to access field calendar data from farm management information systems (FMIS)

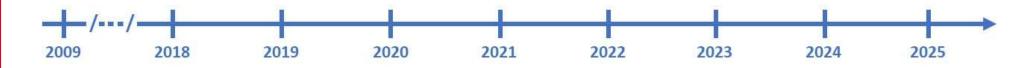
Anina Gilgen

07.10.2024

www.agroscope.ch I good food, healthy environment

Agri-environmental monitoring of Switzerland

Data sources:


- Existing data sources (e.g. from the FOAG or producer associations) including digiFLUX when available
- Data gathered by various agricultural software systems
- Data gathered from online surveys
- Interpreted satellite data

SAEDN (Swiss Agri-Environmental Data Network)

Data sources:

- All data from a network of approximately 300 farms
- Data are collected using the same software tool (AGRO-TECH)
- Data are supplied anonymously via trust agencies

Potential of FMIS for agri-environmental purposes

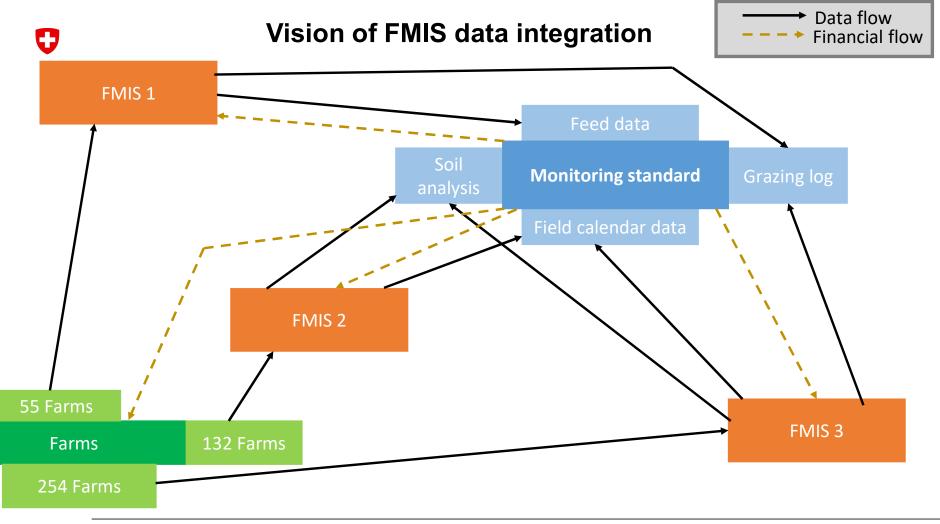
Data already exists

 \rightarrow avoiding multiple surveys

News Spot Agridigital – MAUS – 29.02.2024 Anina Gilgen

Potential of FMIS for agri-environmental purposes

- Data already exists
- \rightarrow avoiding multiple surveys
- Spatially and temporally highly resolved data
- \rightarrow Higher validity of the monitoring results
- \rightarrow Spatial intersection with other data sources (e.g. slope)


Potential of FMIS for agri-environmental purposes

Data already exists

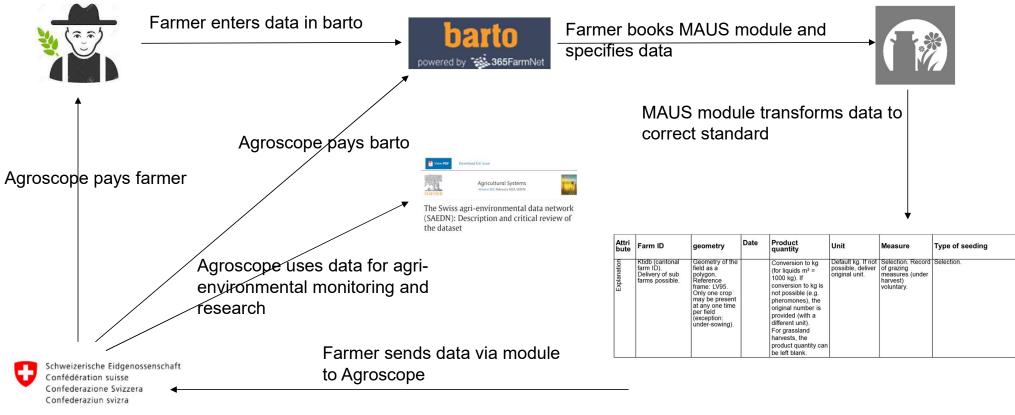
- \rightarrow avoiding multiple surveys
- Spatially and temporally highly resolved data
- \rightarrow Higher validity of the monitoring results
- \rightarrow Spatial intersection with other data sources (e.g. slope)
- Which data?
- \rightarrow E.g. grazing log, feed ration calculation, field calendar
- \rightarrow Field calender: all measures carried out on each field with date

Challenges when using FMIS data

- 1. Access to data (belongs to farmers)
- 2. Only a few standardisations in data
- 3. Data gaps: not all information in all FMIS available
- 4. Data quality
- 5. Sample size: only minority of farms currently use FMIS

News Spot Agridigital – MAUS – 29.02.2024 Anina Gilgen

Pilot project


- Project with FMIS «barto»
- Goal: test standardisation and delivery of data in one FMIS
- Focus: field calender data
- \rightarrow So-called **MAUS module** was created for this purpose

Data standard (small extract)

Attri bute	Farm ID	geometry	Date	Product quantity	Unit	Measure	Type of seeding
Explanation	Ktidb (cantonal farm ID). Delivery of sub farms possible.	Geometry of the field as a polygon. Reference frame: LV95. Only one crop may be present at any one time per field (exception: under-sowing).		Conversion to kg (for liquids m ³ = 1000 kg). If conversion to kg is not possible (e.g. pheromones), the original number is provided (with a different unit). For grassland harvests, the product quantity can be left blank.	Default kg. If not possible, deliver original unit.	Selection. Record of grazing measures (under harvest) voluntary.	Selection.
Unit	-		-	kg. In exceptional cases, 1:1 adoption.	-	-	-
Forma t	String	Polygon, Point, Linestring, Multipolygon	dd.mm.y yyy	Float	String, selection	String, selection	String, selection

Delivery concept

Agroscope

Screen shot of MAUS module within barto

Exploitations Parcelles Interventions Intervention Date d'intervention Fin d'intervention Parcelle Culture Détails Ξ Ŧ Ŧ Ŧ Ŧ tt.mm.jjjj tt.mm.jjjj Semis, plantation 10.10.2023 10.10.2023 Test_Getreide_Ernte Colza d'automne * . Variété Nom Sous-semis Semence traitée Colza d'automne Visby Quantité Surface travaillée Type de culture Méthode* 100.00 kg 1.69 ha Culture principale \checkmark Récolte 28.02.2024 28.02.2024 Test_Getreide_Ernte + . Plantation Semis, plantation 04.08.2023 04.08.2023 Test_HK_KW_HK_ZwK_KW_HK + . b Semis direct Récolte 23.02.2024 23.02.2024 Test_HK_KW_HK_ZwK_KW_HK + ۲ Sous litière av. retournement, profondeur Protection des cultures 05.03.2024 05.03.2024 testdk . <10cm Sous litière sans retournement av. prise de

MES LIVRAISONS 2024

News Spot Agridigital – MAUS – 29.02.2024 Anina Gilgen

Screen shot of automated data quality control within barto

News Spot Agridigital – MAUS – 29.02.2024 Anina Gilgen

Current state

- MAUS module was launched in barto in March 2024
- First farms delivered data, some technical issues needed to be resolved
- Now process started to transfer this process to other interested FMIS (WTO)

Challenges when using FMIS data

- Access to data (belongs to farmers) → voluntary delivery of data via own module in FMIS
- 2. Only a **few standardisations** in data → *let FMIS module standardise data (provide reference)*
- 3. Data **gaps**: not all information in all FMIS available → *let FMIS module fill the gaps*
- 4. Data quality → include automated data quality controls in FMIS module
- 5. Sample size: only minority of farms currently use FMIS → combine FMIS data with other data sources (e.g. satellite data, online surveys)

Thank you for your attention!

anina.gilgen@agroscope.admin.ch

Agroscope good food, healthy environment www.agroscope.admin.ch

Environmental Topic

Nitrogen Phosphorus Energy + climate NADUF **OECD AEIs:** Water NAQUA Agricultural land area Soil N-balance NAWA **Biodiversity** Ammonia emissions NABEL P-balance NABO GHG emissions Energy use and biofuel production FBI (OECD) Agricultural PPP sales **ALL-EMA** CC soil P **SAEDN AEIs:** Cantonal/regional N-balance Potential N-losses watercourse Ammonia emissions monitorings (e.g. P-balance DÜFUR) GHG emissions KABO Energy use Energy efficiency Cantonal/regional Use of PPP biodiversity Aquatic Ecotoxicity Risk monitorings Soil cover (e.g. BDM Thurgau) **Erosion potential** Humus balance Heavy metal balance Potential impact on biodiversity Agricultural practices Status of the

Agricultural practices (drivers, pressures)

National

Field/farm or regional

Resolution

Status of the environment

Causal chain

Q